翻訳と辞書
Words near each other
・ Stochastic
・ Stochastic approximation
・ Stochastic block model
・ Stochastic calculus
・ Stochastic cellular automaton
・ Stochastic computing
・ Stochastic context-free grammar
・ Stochastic control
・ Stochastic cooling
・ Stochastic differential equation
・ Stochastic diffusion search
・ Stochastic discount factor
・ Stochastic dominance
・ Stochastic drift
・ Stochastic electrodynamics
Stochastic Empirical Loading and Dilution Model
・ Stochastic equicontinuity
・ Stochastic Eulerian Lagrangian method
・ Stochastic forensics
・ Stochastic frontier analysis
・ Stochastic game
・ Stochastic geometry
・ Stochastic geometry models of wireless networks
・ Stochastic gradient descent
・ Stochastic grammar
・ Stochastic hill climbing
・ Stochastic interpretation
・ Stochastic investment model
・ Stochastic matrix
・ Stochastic measurement procedure


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Stochastic Empirical Loading and Dilution Model : ウィキペディア英語版
Stochastic Empirical Loading and Dilution Model


The Stochastic Empirical Loading and Dilution Model (SELDM)〔Granato, G.E., 2013, Stochastic empirical loading and dilution model (SELDM) version 1.0.0: U.S. Geological Survey Techniques and Methods, book 4, chap. C3, 112 p.〕〔Granato, G.E., 2014, SELDM: Stochastic Empirical Loading and Dilution Model version 1.0.1 Software support page available at http://webdmamrl.er.usgs.gov/g1/ggranato/Software/seldm.html〕 is a stormwater quality model. SELDM is designed to transform complex scientific data into meaningful information about the risk of adverse effects of runoff on receiving waters, the potential need for mitigation measures, and the potential effectiveness of such management measures for reducing these risks. The U.S. Geological Survey developed SELDM in cooperation with the Federal Highway Administration to help develop planning-level estimates of event mean concentrations, flows, and loads in stormwater from a site of interest and from an upstream basin. SELDM uses information about a highway site, the associated receiving-water basin, precipitation events, stormflow, water quality, and the performance of mitigation measures to produce a stochastic population of runoff-quality variables. Although SELDM is, nominally, a highway runoff model is can be used to estimate flows concentrations and loads of runoff-quality constituents from other land use areas as well. SELDM was developed by the U.S. Geological Survey so the model, source code, and all related documentation are provided free of any copyright restrictions according to (U.S. copyright laws ) and the USGS (Software User Rights Notice ).
SELDM is a stochastic mass-balance model〔Di Toro, D.M., 1984, Probability model of stream quality due to runoff: Journal of Environmental Engineering, v. 110, no. 3, p. 607–628.〕〔Warn, A.E., and Brew, J.S., 1980, Mass balance: Water Research, v. 14, p. 1427–1434.〕〔Schwartz, S.S., and Naiman, D.Q., 1999, Bias and variance of planning-level estimates of pollutant loads: Water Resources Research, v. 35, no. 11, p. 3475–3487.〕 A mass-balance approach (figure 1) is commonly applied to estimate the concentrations and loads of water-quality constituents in receiving waters downstream of an urban or highway-runoff outfall. In a mass-balance model, the loads from the upstream basin and runoff source area are added to calculate the discharge, concentration, and load in the receiving water downstream of the discharge point.
SELDM can do a stream-basin analysis and a lake-basin analysis. The stream-basin analysis uses a stochastic mass-balance analysis based on multi-year simulations including hundreds to thousands of runoff events. SELDM generates storm-event values for the site of interest (the highway site) and the upstream receiving stream to calculate flows, concentrations, and loads in the receiving stream downstream of the stormwater outfall. The lake-basin analysis also is a stochastic multi-year mass-balance analysis. The lake-basin analysis uses the highway loads that occur during runoff periods, the total annual loads from the lake basin to calculate annual loads to and from the lake. The lake basin analysis uses the volume of the lake and pollutant-specific attenuation factors to calculate a population of average-annual lake concentrations.
The annual flows and loads SELDM calculates for the stream and lake analyses also can be used to estimate total maximum daily loads (TMDLs) for the site of interest and the upstream lake basin. The TMDL can be based on the average of annual loads because product of the average load times the number of years of record will be the sum-total load for that (simulated) period of record. The variability in annual values can be used to estimate the risk of exceedance and the margin of safety for the TMDL analysis
==Model description==
SELDM is a stochastic model because it uses Monte Carlo methods to produce the random combinations of input variable values needed to generate the stochastic population of values for each component variable. SELDM calculates the dilution of runoff in the receiving waters and the resulting downstream event mean concentrations and annual average lake concentrations. Results are ranked, and plotting positions are calculated, to indicate the level of risk of adverse effects caused by runoff concentrations, flows, and loads on receiving waters by storm and by year. Unlike deterministic hydrologic models, SELDM is not calibrated by changing values of input variables to match a historical record of values. Instead, input values for SELDM are based on site characteristics and representative statistics for each hydrologic variable. Thus, SELDM is an empirical model based on data and statistics rather than theoretical physicochemical equations.
SELDM is a lumped parameter model because the highway site, the upstream basin, and the lake basin each are represented as a single homogeneous unit. Each of these source areas is represented by average basin properties, and results from SELDM are calculated as point estimates for the site of interest. Use of the lumped parameter approach facilitates rapid specification of model parameters to develop planning-level estimates with available data. The approach allows for parsimony in the required inputs to and outputs from the model and flexibility in the use of the model. For example, SELDM can be used to model runoff from various land covers or land uses by using the highway-site definition as long as representative water quality and impervious-fraction data are available.
SELDM is easy to use because it has a simple graphical user interface and because much of the information and data needed to run SELDM are embedded in the model.〔 SELDM provides input statistics for precipitation, prestorm flow, runoff coefficients, and concentrations of selected water-quality constituents from National datasets. Input statistics may be selected on the basis of the latitude, longitude, and physical characteristics of the site of interest and the upstream basin. The user also may derive and input statistics for each variable that are specific to a given site of interest or a given area. Information and data from hundreds to thousands of sites across the country were compiled to facilitate use of SELDM.〔Granato, G.E., and Cazenas, P.A., 2009, Highway-Runoff Database (HRDB Version 1.0)--A data warehouse and preprocessor for the stochastic empirical loading and dilution model: Washington, D.C., U.S. Department of Transportation, Federal Highway Administration, FHWA-HEP-09-004, 57 p.〕〔Granato, G.E., Carlson, C.S., and Sniderman, B.S., 2009, Methods for development of planning-level stream-water-quality estimates at unmonitored sites in the conterminous United States: Washington, D.C., U.S. Department of Transportation, Federal Highway Administration, FHWA-HEP-09-003, 53 p.〕〔Granato, G.E., 2010, Methods for development of planning-level estimates of stormflow at unmonitored sites in the conterminous United States: Washington, D.C., U.S. Department of Transportation, Federal Highway Administration, FHWA-HEP-09-005, 90 p.〕〔Smith, K.P., and Granato, G.E., 2010, Quality of stormwater runoff discharged from Massachusetts highways, 2005–07: U.S. Geological Survey Scientific Investigations Report 2009–5269, 198 p.〕 Most of the necessary input data are obtained by defining the location of the site of interest and five simple basin properties. These basin properties are the drainage area, the basin length, the basin slope, the impervious fraction, and the basin development factor〔〔Granato, G.E., 2012, Estimating basin lagtime and hydrograph-timing indexes used to characterize stormflows for runoff-quality analysis: U.S. Geological Survey Scientific Investigations Report 2012–5110, 47 p.〕〔Stricker, V.A., and Sauer, V.B., 1982, Techniques for estimating flood hydrographs for ungaged urban watersheds: U.S. Geological Survey Open-File Report 82–365, 24 p.〕
SELDM models the potential effect of mitigation measures by using Monte Carlo methods with statistics that approximate the net effects of structural and nonstructural best management practices (BMPs). Structural BMPs are defined as the components of the drainage pathway between the source of runoff and a stormwater discharge location that affect the volume, timing, or quality of runoff. SELDM uses a simple stochastic statistical model of BMP performance to develop planning-level estimates of runoff-event characteristics. This statistical approach can be used to represent a single BMP or an assemblage of BMPs. The SELDM BMP-treatment module has provisions for stochastic modeling of three stormwater treatments: volume reduction, hydrograph extension, and water-quality treatment. In SELDM, these three treatment variables are modeled by using the trapezoidal distribution 〔Kacker, R.N., and Lawrence, J.F., 2007, Trapezoidal and triangular distributions for Type B evaluation of standard uncertainty: Metrologia, v. 44, no. 2, p. 117–127.〕 and the rank correlation 〔Helsel, D.R., and Hirsch, R.M., 2002, Statistical methods in water resources—Hydrologic analysis and interpretation: U.S. Geological Survey Techniques of Water-Resources Investigations, book 4, chap. A3, 510 p.〕 with the associated highway-runoff variables. This report describes methods for calculating the trapezoidal-distribution statistics and rank correlation coefficients for stochastic modeling of volume reduction, hydrograph extension, and water-quality treatment by structural stormwater BMPs and provides the calculated values for these variables. These statistics are different from the statistics commonly used to characterize or compare BMPs. They are designed to provide a stochastic transfer function to approximate the quantity, duration, and quality of BMP effluent given the associated inflow values for a population of storm events.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Stochastic Empirical Loading and Dilution Model」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.